skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dai, Shibin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this article, we use the Nehari manifold and the eigenvalue problem for the negative Laplacian with Dirichlet boundary condition to analytically study the minimizers for the de Gennes–Cahn–Hilliard energy with quartic double‐well potential and Dirichlet boundary condition on the bounded domain. Our analysis reveals a bifurcation phenomenon determined by the boundary value and a bifurcation parameter that describes the thickness of the transition layer that segregates the binary mixture's two phases. Specifically, when the boundary value aligns precisely with the average of the pure phases, and the bifurcation parameter surpasses or equals a critical threshold, the minimizer assumes a unique form, representing the homogeneous state. Conversely, when the bifurcation parameter falls below this critical value, two symmetric minimizers emerge. Should the boundary value be larger or smaller from the average of the pure phases, symmetry breaks, resulting in a unique minimizer. Furthermore, we derive bounds of these minimizers, incorporating boundary conditions and features of the de Gennes–Cahn–Hilliard energy. 
    more » « less
  2. null (Ed.)